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Abstract
Scheme provides excellent language support for programming in
a functional style, but little in the way of library support. In this
paper, we present a comprehensive library of functional data struc-
tures, drawing from several sources. We have implemented the li-
brary in Typed Racket, a typed variant of Racket, allowing us to
maintain the type invariants of the original definitions.

1. Functional Data Structures for a Functional
Language

Functional programming requires more than just lambda; library
support for programming in a functional style is also required.
In particular, efficient and persistent functional data structures are
needed in almost every program.

Scheme does provide one supremely valuable functional data
structure—the linked list. This is sufficient to support many forms
of functional programming (Shivers 1999) (although lists are sadly
mutable in most Schemes), but not nearly sufficient. To truly sup-
port efficient programming in a functional style, additional data
structures are needed.

Fortunately, the last 15 years have seen the development of
many efficient and useful functional data structures, in particular
by Okasaki (1998) and Bagwell (2002; 2000). These data structures
have seen wide use in languages such as Haskell and Clojure, but
have rarely been implemented in Scheme.

In this paper, we present a comprehensive library of efficient
functional data structures, implemented in Typed Racket (Tobin-
Hochstadt and Felleisen 2008), a recently-developed typed dialect
of Racket (formerly PLT Scheme). The remainder of the paper is
organized as follows. We first present an overview of Typed Racket,
and describe how typed functional datastructures can interoperate
with untyped, imperative code. Section 2 describes the data struc-
tures, with their API and their performance characteristics. In sec-
tion 3, we present benchmarks demonstrating that our implemena-
tions are viable for use in real code. We then detail the experience
of using Typed Racket for this project, both positive and negative.
Finally, we discuss other implementations and conclude.

1.1 An Overview of Typed Racket
Typed Racket (Tobin-Hochstadt and Felleisen 2008; Tobin-Hochstadt
2010) is an explicitly typed dialect of Scheme, implemented in
Racket (Flatt and PLT 2010). Typed Racket supports both integra-
tion with untyped Scheme code as well as a typechecker designed
to work with idiomatic Scheme code.

While this paper presents the API of the functional data struc-
tures, rather than their implementation, we begin with a brief de-
scription of a few key features of the type system.

First, Typed Racket supports explicit polymorphism, which is
used extensively in the functional data structure library. Type argu-
ments to polymorphic functions are automatically inferred via lo-
cal type inference (Pierce and Turner 2000). Second, Typed Racket

supports untagged rather than disjoint unions. Thus, most data
structures presented here are implemented as unions of several dis-
tinct structure types.

1.2 Interoperation with External Code
Most Scheme programs are neither purely functional nor typed.
That does not prevent them from benefiting from the data struc-
tures presented in this paper, however. Typed Racket automatically
supports interoperation between typed and untyped code, allowing
any program to use the data structures presented here, regardless of
whether it is typed. Typed Racket does however enforce its type in-
variants via software contracts, which can reduce the performance
of the structures.

Additionally, using these data structures in no way requires
programming in a purely functional style. An mostly-functional
Scheme program that does not mutate a list can replace that list
with a VList without any problem. Using functional data structures
often adds persistence and performance without subtracting func-
tionality.

2. An Introduction to Functional Data Structures
Purely functional data structures, like all data structures, come in
many varieties. For this work, we have selected a variety that pro-
vide different APIs and performance characteristics. They include
several variants of queues, double-ended queues (or deques), pri-
ority queues (or heaps), lists, hash lists, tries, red-black trees, and
streams. All of the implemented data structures are polymorphic in
their element type.

The following subsections describe each of these data struc-
tures, many with a number of different implementations with dis-
tinct performance characteristics. Each subsection introduces the
data structure, specifies its API, provides examples, and then dis-
cusses each implementation variant and their performance charac-
teristics.

2.1 Queues
Queues are simple “First In First Out” (FIFO) data structures. We
have implemented a wide variety of queues, each with the interface
given below. Each queue implementation provides a polymorphic
type (Queue A), as well as the following functions:

• queue : (∀ (A) A * → (Queue A))

Constructs a queue with the given elements in order. In the
queue type signature, ∀ is a type constructor used for poly-
morphic types, binding the given type variables, here A. The
function type constructor → is written infix between arguments
and results. The annotation * in the function type specifies that
queue accepts arbitrarily many elements of type A, producing
a queue of type (Queue A).

• enqueue : (∀ (A) A (Queue A) → (Queue A))
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Inserts the given element (the first argument) into the given
queue (the second argument), producing a new queue.

• head : (∀ (A) (Queue A) → A)

Returns the first element in the queue. The queue is unchanged.
• tail : (∀ (A) (Queue A) → (Queue A))

Removes the first element from the given queue, producing a
new queue.

> (define que (queue -1 0 1 2 3 4))
> que
- : (Queue Fixnum)
#<Queue>
> (head que)
- : Fixnum
-1
> (head (tail que))
- : Fixnum
0
> (head (enqueue 10 que))
- : Fixnum
-1

Banker’s Queues The Bankers Queues (Okasaki 1998) are amor-
tized queues obtained using a method of amortization called the
Banker’s method. The Banker’s Queue combines the techniques
of lazy evaluation and memoization to obtain good amortized run-
ning times. The Bankers Queue implementation internally uses
streams (see section 2.4.4) to achieve lazy evaluation. The Banker’s
Queue provides a amortized running time of O(1) for the opera-
tions head, tail and enqueue.

Physicist’s Queue The Physicist’s Queue (Okasaki 1998) is a
amortized queue obtained using a method of amortization called the
Physicist’s method. The Physicist’s Queue also uses the techniques
of lazy evaluation and memoization to achieve excellent amortized
running times for its operations. The only drawback of the Physi-
cist’s method is that it is much more complicated than the Banker’s
method. The Physicist’s Queue provides an amortized running time
of O(1) for the operations head, tail and enqueue.

Real-Time Queue Real-Time Queues eliminate the amortization
of the Banker’s and Physicist’s Queues to produce a queue with ex-
cellent worst-case as well as amortized running times. Real-Time
Queues employ lazy evaluation and a technique called schedul-
ing (Okasaki 1998) where lazy components are forced systemati-
cally so that no suspension takes more than constant time to ex-
ecute, assuring ensures good asymptotic worst-case running time
for the operations on the data structure. Real-Time Queues have an
O(1) worst-case running time for the operations head, tail and
enqueue.

Implicit Queue Implicit Queues are a queue data structure im-
plemented by applying a technique called implicit recursive slow-
down (Okasaki 1998). Implicit recursive slowdown combines lazi-
ness with a technique called recursive slowdown developed by Ka-
plan and Tarjan (1995). This technique is simpler than pure recur-
sive slow-down, but with the disadvantage of amortized bounds on
the running time. Implicit Queues provide an amortized running
time of O(1) for the operations head, tail and enqueue.

Bootstrapped Queue The technique of bootstrapping is applica-
ble to problems whose solutions require solutions to simpler in-
stances of the same problem. Bootstrapped Queues are a queue data
structure developed using a bootstrapping technique called struc-
tural decomposition (Okasaki 1998). In structural decomposition,
an implementation that can handle data up to a certain bounded

size is used to implement a data structure which can handle data of
unbounded size. Bootstrapped Queues give a worst-case running
time of O(1) for the operation head and O(log∗ n)1 for tail
and enqueue. Our implementation of Bootstrapped Queues uses
Real-Time Queues for bootstrapping.

Hood-Melville Queue Hood-Melville Queues are similar to the
Real-Time Queues in many ways, but use a different and more com-
plex technique, called global rebuilding, to eliminate amortization
from the complexity analysis. In global rebuilding, rebalancing is
done incrementally, a few steps of rebalancing per normal opera-
tion on the data structure. Hood-Melville Queues have worst-case
running times of O(1) for the operations head, tail and en-
queue.

2.2 Deque
Double-ended queues are also known as deques. The difference
between the queues and the deques lies is that new elements of
a deque can be inserted and deleted from either end. We have
implemented several deque variants, each discussed below. All the
deque data structures implement following interface and have the
type (Deque A).

• deque : (∀ (A) A * → (Deque A))

Constructs a double ended queue from the given elements in
order.

• enqueue : (∀ (A) A (Deque A) → (Deque A))

Inserts the given element to the rear of the deque.
• enqueue-front : (∀ (A) A (Deque A) → (Deque A))

Inserts the given element to the front of the deque.
• head : (∀ (A) (Deque A) → A)

Returns the first element from the front of the deque.
• last : (∀ (A) (Deque A) → A)

Returns the first element from the rear of the deque.
• tail : (∀ (A) (Deque A) → (Deque A))

Removes the first element from the front of the given deque,
producing a new deque.

• init : (∀ (A) (Deque A) → (Deque A))

Removes the first element from the rear of the given deque,
producing a new deque.

> (define dque (deque -1 0 1 2 3 4))
> dque
- : (Deque Fixnum)
#<Deque>
> (head dque)
- : Fixnum
-1
> (last dque)
- : Fixnum
4
> (head (enqueue-front 10 dque))
- : Fixnum
10
> (last (enqueue 20 dque))
- : Fixnum
20
> (head (tail dque))
- : Fixnum
0

1 log∗ n is at most 5 for all feasible queue lengths.
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> (last (init dque))
- : Fixnum
3

Banker’s Deque The Banker’s Deque is an amortized deque.
The Banker’s Deque uses the Banker’s method and employs the
same techniques used in the Banker’s Queues to achieve amortized
running times of O(1) for the operations head, tail, last,
init, enqueue-front and enqueue.

Implicit Deque The techniques used by Implicit Deques are same
as that used in Implicit Queues i.e. Implicit Recursive Slowdown.
Implicit Deque provides O(1) amortized running times for the
operations head, tail, last, init, enqueue-front and
enqueue.

Real-Time Deque The Real-Time Deques eliminate the amorti-
zation in the Banker’s Deque to produce deques with good worst-
case behavior. The Real-Time Deques employ the same techniques
employed by the Real-Time Queues to provide worst-case run-
ning time of O(1) for the operations head, tail, last, init,
enqueue-front and enqueue.

2.3 Heaps
In order to avoid confusion with FIFO queues, priority queues are
also known as heaps. A heap is similar to a sortable collection,
implemented as a tree, with a comparison function fixed at creation
time. There are two requirements that a tree must meet in order for
it to be a heap:

• Shape Requirement - All its levels must be full except (possi-
bly) the last level where only rightmost leaves may be missing.

• Parental Dominance Requirement - The key at each node must
greater than or equal (max-heap) OR less than or equal (min-
heap) to the keys at its children. A tree satisfying this property
is said to be heap-ordered.

Below, we present several heap variants. Each variant has the type
(Heap A) and implements the following interface:

• heap :(∀ (A) (A A → Boolean) A * → (Heap A))

Constructs a heap from the given elements and comparison
function.

• find-min/max : (∀ (A) (Heap A) → A)

Returns the min or max element of the given heap.
• delete-min/max : (∀ (A) (Heap A) → (Heap A))

Deletes the min or max element of the given heap.
• insert : (∀ (A) A (Heap A) → (Heap A))

Inserts an element into the heap.
• merge : (∀ (A) (Heap A) (Heap A) → (Heap A))

Merges the two given heaps.

> (define hep (heap < 1 2 3 4 5 -1))
> hep
- : (Heap (U Positive-Fixnum Negative-Fixnum))
#<Heap>
> (find-min/max hep)
- : (U Positive-Fixnum Negative-Fixnum)
-1
> (find-min/max (delete-min/max hep))
- : (U Positive-Fixnum Negative-Fixnum)
1
> (define new-hep (heap < -2 3 -4 5))
> (find-min/max (merge hep new-hep))
- : (U Positive-Fixnum Negative-Fixnum)

-4

Binomial Heap A Binomial Heap (Vuillemin 1978; Brown 1978)
is a heap-ordered binomial tree. Binomial Heaps support a fast
merge operation using a special tree structure. Binomial Heaps
provide a worst-case running time of O(logn) for the operations
insert, find-min/max, delete-min/max and merge.

Leftist Heap Leftist Heaps (Crane 1972) are heap-ordered binary
trees that satisfy the leftist property. Each node in the tree is as-
signed a value called a rank. The rank represents the length of its
rightmost path from the node in question to the nearest leaf. The
leftist property requires that right descendant of each node has a
lower rank than the node itself. As a consequence of the leftist
property, the right spine of any node is always the shortest path
to a leaf node. The Leftist Heaps provide a worst-case running
time of O(logn) for the operations insert, delete-min/max
and merge and a worst-case running time of O(1) for find-
min/max.

Pairing Heap Pairing Heaps (Fredman et al. 1986) are a type
of heap which have a very simple implementation and extremely
good amortized performance in practice. However, it has proved
very difficult to come up with exact asymptotic running time for
operations on Pairing Heaps. Pairing Heaps are represented either
as a empty heap or a pair of an element and a list of pairing
heaps. Pairing Heaps provide a worst-case running time of O(1)
for the operations insert, find-min/max and merge, and an
amortized running time of O(logn) for delete-min/max.

Splay Heap Splay Heaps (Sleator and Tarjan 1985) are very simi-
lar to balanced binary search trees. The difference between the two
is that Splay Heaps do not maintain explicit balance information.
Instead, every operation on a splay heap restructures the tree with
simple transformations that increase the balance. Because of the re-
structuring on every operation, the worst-case running time of all
operations is O(n). However, the amortized running time of the
operations insert, find-min/max, delete-min/max and
merge is O(logn).

Skew Binomial Heap Skew Binomial Heaps are similar to Bino-
mial Heaps, but with a hybrid numerical representation for heaps
which is based on the skew binary numbers (Myers 1983). The
skew binary number representation is used since incrementing
skew binary numbers is quick and simple. Since the skew bi-
nary numbers have a complicated addition, the merge operation is
based on the ordinary binary numbers itself. Skew Binomial Heaps
provide a worst-case running time of O(logn) for the operations
find-min/max, delete-min/max and merge, and a worst-
case running time of O(1) for the insert operation.

Lazy Pairing Heap Lazy Pairing Heaps (Okasaki 1998) are simi-
lar to pairing heaps as described above, except that Lazy Pairing
Heaps use lazy evaluation. Lazy evaluation is used in this data
structure so that the Pairing Heap can cope with persistence effi-
ciently. Analysis of Lazy Pairing Heaps to obtain exact asymptotic
running times is difficult, as it is for Pairing Heaps. Lazy Pairing
Heaps provide a worst-case running time of O(1) for the opera-
tions insert, find-min/max, and merge, and an amortized
running time of O(logn) for the delete-min/max operation.

Bootstrapped Heap Bootstrapped Heaps (Okasaki 1998) use a
technique of bootstrapping called structural abstraction (Okasaki
1998), where one data structure abstracts over a less efficient data
structure to get better running times. Bootstrapped Heaps pro-
vide a worst-case running time of O(1) for the insert, find-
min/max and merge operations and a worst-case running time of
O(logn) for delete-min/max operation. Our implementation
of Bootstrapped Heap abstracts over Skew Binomial Heaps.
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2.4 Lists
Lists are a fundamental data structure in Scheme. However, while
singly-linked lists have the advantages of simplicity and efficiency
for some operations, many others are quite expensive. Other data
structures can efficiently implement the operations of Scheme’s
lists, while providing other efficient operations as well. We imple-
ment Random Access Lists, Catenable Lists, VLists and Streams.
Each implemented variant is explained below. All variants pro-
vide the type (List A), and the following interface, which is
extended for each implementation:

• list : (∀ (A) A * → (List A))

Constructs a list from the given elements, in order.
• cons : (∀ (A) A (List A) → (List A))

Adds a given element into the front of a list.
• first : (∀ (A) (List A) → A)

Returns the first element of the given list.
• rest : (∀ (A) (List A) → (List A))

Produces a new list without the first element.

2.4.1 Random Access List
Random Access Lists are lists with efficient array-like random
access operations. These include list-ref and list-set (a
functional analogue of vector-set!). Random Access Lists
extend the basic list interface with the following operations:

• list-ref : (∀ (A) (List A) Integer → A)

Returns the element at a given location in the list.
• list-set : (∀ (A) (List A) Integer A → (List A))

Updates the element at a given location in the list with a new
element.

> (define lst (list 1 2 3 4 -5 -6))
> lst
- : (U Null-RaList (Root (U Positive-Fixnum

Negative-Fixnum)))
#<Root>
> (first lst)
- : (U Positive-Fixnum Negative-Fixnum)
1
> (first (rest lst))
- : (U Positive-Fixnum Negative-Fixnum)
2
> (list-ref lst 3)
- : (U Positive-Fixnum Negative-Fixnum)
4
> (list-ref (list-set lst 3 20) 3)
- : (U Positive-Fixnum Negative-Fixnum)
20
> (first (cons 50 lst))
- : (U Positive-Fixnum Negative-Fixnum)
50

Binary Random Access List Binary Random Access Lists are
implemented as using the framework of binary numerical represen-
tation using complete binary leaf trees (Okasaki 1998). They have
worst-case running times of O(logn) for the operations cons,
first, rest, list-ref and list-set.

Skew Binary Random Access List Skew Binary Random Access
Lists are similar to Binary Random Access Lists, but use the skew
binary number representation, improving the running times of some
operations. Skew Binary Random Access Lists provide worst-case
running times of O(1) for the operations cons, head and tail

and worst-case running times of O(logn) for list-ref and
list-set operations.

2.4.2 Catenable List
Catenable Lists are a list data structure with an efficient append
operation, achieved using the bootstrapping technique of structural
abstraction (Okasaki 1998). Catenable Lists are abstracted over
Real-Time Queues, and have an amortized running time of O(1)
for the basic list operations as well as the following:

• cons-to-end : (∀ (A) A (List A) → (List A))

Inserts a given element to the rear end of the list.
• append : (∀ (A) (List A) * → (List A))

Appends several lists together.

> (define cal (list -1 0 1 2 3 4))
> cal
- : (U EmptyList (List Fixnum))
#<List>
> (first cal)
- : Fixnum
-1
> (first (rest cal))
- : Fixnum
0
> (first (cons 50 cal))
- : Fixnum
50
> (cons-to-end 50 cal)
- : (U EmptyList (List Fixnum))
#<List>
> (define new-cal (list 10 20 30))
> (first (append new-cal cal))
- : Fixnum
10

2.4.3 VList
VLists (Bagwell 2002) are a data structure very similar to normal
Scheme lists, but with efficient versions of many operations that
are much slower on standard lists. VLists combine the extensibility
of linked lists with the fast random access capability of arrays. The
indexing and length operations of VLists have a worst-case running
time of O(1) and O(lgn) respectively, compared to O(n) for lists.
Our VList implementation is built internally on Binary Random
Access Lists. VLists provide the standard list API given above,
along with many other operations, some of which are given here.

• last : (∀ (A) (List A) → A)

Returns the last element of the given list.
• list-ref : (∀ (A) (List A) Integer → A)

Gets the element at the given index in the list.

> (define vlst (list -1 1 3 4 5))
> vlst
- : (List (U Positive-Fixnum Negative-Fixnum))
#<List>
> (first vlst)
- : (U Positive-Fixnum Negative-Fixnum)
-1
> (first (rest vlst))
- : (U Positive-Fixnum Negative-Fixnum)
1
> (last vlst)
- : (U Positive-Fixnum Negative-Fixnum)
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5
> (length vlst)
- : Integer
5
> (first (cons 50 vlst))
- : (U Positive-Fixnum Negative-Fixnum)
50
> (list-ref vlst 3)
- : (U Positive-Fixnum Negative-Fixnum)
4
> (first (reverse vlst))
- : (U Positive-Fixnum Negative-Fixnum)
5
> (first (map add1 vlst))
- : Integer
0

2.4.4 Streams
Streams (Okasaki 1998) are simply lazy lists. They are similar to
the ordinary lists and they provide the same functionality and API.
Streams are used in many of the foregoing data structures to achieve
lazy evaluation. Streams do not change the asymptotic performance
of any list operations, but introduce overhead at each suspension.
Since streams have distinct evaluation behavior, they are given a
distinct type, (Stream A).

2.5 Hash Lists
Hash Lists (Bagwell 2002) are similar to association lists, here im-
plemented using a modified VList structure. The modified VList
contains two portions—the data and the hash table. Both the por-
tions grow as the hash-list grows. The running time for Hash Lists
operations such as insert, delete, and lookup are very close
to those for standard chained hash tables.

2.6 Tries
A Trie (also known as a Digital Search Tree) is a data structure
which takes advantage of the structure of aggregate types to achieve
good running times for its operations (Okasaki 1998). Our imple-
mentation provides Tries in which the keys are lists of the element
type; this is sufficient for representing many aggregate data struc-
tures. In our implementation, each trie is a multiway tree with each
node of the multiway tree carrying data of base element type. Tries
provide lookup and insert operations with better asymptotic
running times than hash tables.

2.7 Red-Black Trees
Red-Black Trees are a classic data structure, consisting of a binary
search tree in which every node is colored either red or black,
according to the following two balance invariants:

• no red node has a red child, and
• every path from root to an empty node has the same number of

black nodes.

The above two invariants together guarantee that the longest
possible path with alternating black and red nodes, is no more
then twice as long as the shortest possible path, the one with black
nodes only. This balancing helps in achieving good running times
for the tree operations. Our implementation is based on one by
Okasaki (1999). The operations member?, insert and delete,
which respectively checks membership, inserts and deletes ele-
ments from the tree, have worst-case running time of O(logn).

3. Benchmarks
To demonstrate the practical usefulness of purely functional data
structures, we provide microbenchmarks of a selected set of data
structures, compared with both simple implementations based on
lists, and imperative implementations. The list based version is im-
plemented in Typed Racket and imperative version is implemented
in Racket. The benchmaking was done on a 2.1 GHz Intel Core
2 Duo (Linux) machine and we used Racket version 5.0.0.9 for
benchmarking.

In the tables below, all times are CPU time as reported by
Racket, including garbage collection time. The times mentioned
are in milli seconds and they are time taken for performing each
operation 100000 times, averaged over 10 runs. 2

3.1 Queue Performance
The table in figure 1 shows the performance of the Physicist’s
Queue, Banker’s Queue, Real-Time Queue and Bootstrapped
Queue compared with an implementation based on lists, and an
imperative queue (Eastlund 2010). 3

3.2 Heap Performance
The table in figure 2 shows the performance of the Leftist Heap,
Pairing Heap, Binomial Heap and Bootstrapped Heap, compared
with an implementation based on sorted lists, and a simple impera-
tive heap.

3.3 List Performance
The below table shows the performance of the Skew Binary Ran-
dom Access List and VList compared with in built lists.

Size Operation RAList VList List

1000
list 24 51 2

list-ref 77 86 240
first 2 9 1
rest 20 48 1
last 178 40 520

10000
list 263 476 40

list-ref 98 110 2538
first 2 9 1
rest 9 28 1
last 200 52 5414

100000
list 2890 9796 513

list-ref 124 131 33187
first 3 10 1
rest 18 40 1
last 204 58 77217

1000000
list 104410 147510 4860

list-ref 172 178 380960
first 2 10 1
rest 20 42 1
last 209 67 755520

4. Experience with Typed Racket
This project involved writing 5300 lines of Typed Racket code, in-
cluding 1300 lines of tests, almost all written by the first author,
who had little previous experience with Typed Racket. This allows
us to report on the experience of using Typed Racket for a program-
mer coming from other languages.

2 The constructor functions queue, heap and list were repeated only
100 times.
3 Since 100000 (successive) tail (or dequeue) operations can not be
performed on 1000 element queue, we do not have running time for tail
operation for for these sizes.
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Size Operation Physicist’s Banker’s Real-Time Bootstrapped List Imperative

1000
queue 16 72 137 20 6 83
head 9 14 30 10 6 54

enqueue 10 127 176 22 256450 73

10000
queue 232 887 1576 227 61 746
head 8 17 32 2 7 56

enqueue 11 132 172 18 314710 75

100000
queue 3410 13192 20332 2276 860 11647
head 9 16 30 6 8 51
tail 412 312 147 20 7 57

enqueue 12 72 224 18 1289370 84

1000000
queue 65590 182858 294310 53032 31480 101383
head 8 17 30 4 7 56
tail 243 1534 1078 20 8 61

enqueue 30 897 1218 20 ∞ 68

Figure 1. Queue Performance

Size Operation Binomial Leftist Pairing Bootstrapped List Imperative

1000
heap 45 192 30 122 9 306

insert 36 372 24 218 323874 623
find 64 7 6 4 6 8

10000
heap 422 2730 340 1283 76 4897

insert 34 358 28 224 409051 628
find 52 9 8 10 7 7

100000
heap 6310 40580 4863 24418 1010 69353

insert 33 434 30 198 1087545 631
find 63 8 8 10 7 9

delete 986 528 462 1946 7 439

1000000
heap 109380 471588 82840 293788 11140 858661

insert 32 438 28 218 ∞ 637
find 76 9 6 8 7 7

delete 1488 976 1489 3063 8 812

Figure 2. Heap Performance

4.1 Benefits of Typed Racket
Several features of Typed Racket makes programming in Typed
Racket quite enjoyable. First, the type error messages in Typed
Racket are very clear and easy to understand. The type checker
highlights precise locations which are responsible for type errors.
This makes it very easy to debug the type errors.

Second, Typed Racket’s syntax is very intuitive, using the infix
operator → for the type of a function. The Kleene star * is used
to indicate zero or more elements for rest arguments. ∀ is the type
constructor used by the polymorphic functions, and so on.

Typed Racket comes with a unit testing framework which makes
it simple to write tests, as in the below example:

(require typed/test-engine/scheme-tests)
(require "bankers-queue.ss")
(check-expect (head (queue 4 5 2 3)) 4)
(check-expect (tail (queue 4 5 2 3))

(queue 5 2 3))
The check-expect form takes the actual and expected value,

and compares them, printing a message at the end summarizing the
results of all tests.

The introductory and reference manuals of Racket in general
and Typed Racket in particular are comprehensive and quite easy
to follow and understand.

4.2 Disadvantages of Typed Racket
Even though overall experience with Typed Racket was positive,
there are negative aspects to programming in Typed Racket.

Most significantly for this work, Typed Racket does not support
polymorphic non-uniform recursive datatype definitions, which are
used extensively by Okasaki (1998). Because of this limitation,
many definitions had to be first converted to uniform recursive
datatypes before being implemented. For instance, the following
definition of Seq structure is not allowed by Typed Racket.

(define-struct: (A) Seq
([elem : A] [recur : (Seq (Pair A A))]))

The definition must be converted not to use polymorphic recursion,
as follows:

(define-struct: (A) Elem ([elem : A]))
(define-struct: (A) Pare

([pair : (Pair (EP A) (EP A))]))
(define-type (EP A) (U (Elem A) (Pare A)))
(define-struct: (A) Seq

([elem : (EP A)] [recur : (Seq A)]))
Unfortunately, this translation introduces the possibility of illegal
states that the typechecker is unable to rule out. We hope to support
polymorphic recursion in a future version of Typed Racket.

It is currently not possible to correctly type Scheme functions
such as foldr and foldl because of the limitations of Typed
Racket’s handling of variable-arity functions (Strickland et al.
2009).
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Typed Racket’s use of local type inference also leads to poten-
tial errors, especially in the presence of precise types for Scheme’s
numeric hierarchy. For example, Typed Racket distinguishes inte-
gers from positive integers, leading to a type error in the following
expression:

(vector-append (vector -1 2) (vector 1 2))
since the first vector contains integers, and the second positive
integers, neither of which is a subtype of the other. Working around
this requires manual annotation to ensure that both vectors have
element type Integer.

Although Racket supports extension of the behavior of primitive
operations such as printing and equality on user-defined data types,
Typed Racket currently does not support this. Thus, it is not possi-
ble to compare any of our data structures accurately using equal?,
and they are printed opaquely, as seen in the examples in section 2.

Typed Racket allows programmers to name arbitrary type ex-
pressions with the define-type form. However, the type printer
does not take into account definitions of polymorphic type aliases
when printing types, leading to the internal implementations of
some types being exposed, as in section 2.4.2. This makes the print-
ing of types confusingly long and difficult to understand, especially
in error messages.

5. Comparison with Other Implementations
Our implementations of the presented data structures are very faith-
ful to the original implementations of Purely Functional Data Struc-
tures by Okasaki (1998) and VLists and others by Bagwell (2000;
2002). In some cases, we provide additional operations, such as for
converting queues to lists.

> (queue->list (queue 1 2 3 4 5 6 -4))
- : (Listof (U Positive-Fixnum Negative-Fixnum))
’(1 2 3 4 5 6 -4)

We also added an to delete elements from the Red-Black Trees,
which was absent in the original implementation. Finally, the heap
constructor functions take an explicit comparison function of the
type (A A → Boolean) as their first argument followed by the
elements for the data structure, whereas the original presentation
uses ML functors for this purpose. With the above exceptions, the
implementation is structurally similar the original work.

We know of no existing comprehensive library of functional
data structures for Scheme. Racket’s existing collection of user-
provided libraries, PLaneT (Matthews 2006), contains an imple-
mentation of Random Access Lists (Van Horn 2010), as well as a
collection of several functional data structures (Soegaard 2009).

VLists and several other functional data structures have recently
been popularized by Clojure (Hickey 2010), a new dialect of Lisp
for the Java Virtual Machine.

6. Conclusion
Efficient and productive functional programming requires efficient
and expressive functional data structures. In this paper, we present
a comprehensive library of functional data structures, implemented
and available in Typed Racket. We hope that this enables program-
mers to write functional programs, and inspires library writers to
use functional designs and to produce new libraries to enable func-
tional programming.
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